Navigation auf uzh.ch
Das Paper «The perils and promises of fact-checking with large language models» von Prof. Dr. Alexandre Bovet und Dorian Quelle wurde in der aktuellen Ausgabe des Journals «Frontiers of Artificial Intelligence» veröffentlicht.
Abstract des Papers:
Automated fact-checking, using machine learning to verify claims, has grown vital as misinformation spreads beyond human fact-checking capacity. Large language models (LLMs) like GPT-4 are increasingly trusted to write academic papers, lawsuits, and news articles and to verify information, emphasizing their role in discerning truth from falsehood and the importance of being able to verify their outputs. Understanding the capacities and limitations of LLMs in fact-checking tasks is therefore essential for ensuring the health of our information ecosystem. Here, we evaluate the use of LLM agents in fact-checking by having them phrase queries, retrieve contextual data, and make decisions. Importantly, in our framework, agents explain their reasoning and cite the relevant sources from the retrieved context. Our results show the enhanced prowess of LLMs when equipped with contextual information. GPT-4 outperforms GPT-3, but accuracy varies based on query language and claim veracity. While LLMs show promise in fact-checking, caution is essential due to inconsistent accuracy. Our investigation calls for further research, fostering a deeper comprehension of when agents succeed and when they fail.
Frontiers in Artificial Intelligence ist eine multidisziplinäre Zeitschrift, die in PubMed Central (PMC), Scopus und DOAJ indexiert ist und sich mit der bahnbrechenden und disruptiven technologischen Revolution der Künstlichen Intelligenz (KI) beschäftigt.
Der vollständige Artikel kann hier gelesen werden:
The perils and promises of fact-checking with large language models